

INFOLINE

 EDITORIAL BOARD

EXECUTIVE COMMITTEE

Chief Patron : Thiru. P.D.Thangavel BBM.,

 Correspondent

Patron : Dr. H.Vasudevan M.Com., M.Phil., MBA., PGDCA.,Ph.D., SLET.

 Principal

Editor in Chief : Mr. S.Muruganantham, M.Sc., M.Phil.,

 Head of the Department

STAFF ADVISOR

Dr. P.Kalarani M.Sc., M.C.A., M.Phil., Ph.D.,

Assistant Professor, Department of Computer Technology and Information Technology

STAFF EDITOR

Ms. C.Indrani M.C.A., M.Phil.,

Assistant Professor, Department of Computer Technology and Information Technology

STUDENT EDITORS

 S.Dinesh III B.Sc. (Computer Technology)

 M.Harini III B.Sc. (Computer Technology)

 K.Bharathkumar III B.Sc. (Information Technology)

 N.Lavanya III B.Sc. (Information Technology)

 M.Harini II B.Sc. (Computer Technology)

 V.B Krishna Prabu II B.Sc. (Computer Technology)

 M.S.K Manassha II B.Sc. (Information Technology)

 P.Logesh II B.Sc. (Information Technology)

 B.Manju Bashini I B.Sc. (Computer Technology)

 K.Barath I B.Sc. (Computer Technology)

 A.P.Anbu I B.Sc. (Information Technology)

 S.Dharshini I B.Sc. (Information Technology)

CONTENTS

Neuromorphic Computing 1

PostgreSQL 5

Automated Technique for Anime Colorization using Deep Learning 7

Understanding Low-Code No-Code (LCNC) Platforms 7

Progressive Web App 11

Relational Database Vs Non-Relational Database 12

Methodologies in Internet of Things (IOT) 16

Explainable Artificial Intelligence (XAI) 18

Reinforcement Learning 19

New Programming Languages 21

Exploring the Latest in Robotics Technology 23

The Future of Coding 24

The Role of Artificial Intelligence (AI) in the Metaverse 25

Coding Trends 2024 27

Space Robotics 29

1

NEUROMORPHIC COMPUTING

Neuromorphic computing is a process

in which computers are designed and

engineered to mirror the structure and function

of the human brain. Using artificial neurons

and synapses, neuromorphic computers

simulate the way our brains process

information, allowing them to solve problems,

recognize patterns and make decisions more

quickly and efficiently than the computers that

commonly use today.

The field of neuromorphic computing is

still relatively new. It has very few real-world

applications beyond the research being carried

out by universities, governments and large tech

companies like IBM and Intel Labs. Even so,

neuromorphic computing shows a lot of

promise particularly in areas like edge

computing, autonomous vehicles, cognitive

computing and other applications of artificial

intelligence where speed and efficiency are

imperative. Today, the scale of the largest AI

computations doubles every three to four

months, according to Stanford University

Professor and neuromorphic computing expert

Kwabena Boahen. Many experts believe that

neuromorphic computing could provide a way

around the limits of Moore’s Law which only

doubles every two years.

How Does Neuromorphic Computing

Work?

Neuromorphic architectures are most

often modelled after the neocortex in the brain.

That’s where higher cognitive functions like

sensory perception, motor commands, spatial

reasoning and language are thought to occur.

The neocortex’s layered structure and intricate

connectivity are critical to its ability to process

complex information and enable human

thinking. The neocortex is made up of neurons

and synapses that send and carry information

from the brain with near-instantaneous speed

and incredible efficiency. It’s what tells one’s

foot to immediately move if one accidentally

steps on a sharp nail.

Neuromorphic computers try to

replicate that efficiency. They do so by forming

what are called spiking neural networks. These

are formed when spiking neurons, which hold

data as if they were biological neurons, are

connected via artificial synaptic devices that

transfer electrical signals between them. A

spiking neural network is essentially the

hardware version of an artificial neural

network, which is a series of algorithms run on

a regular computer that mimics the logic of

how a human brain thinks.

https://builtin.com/cloud-computing/what-is-edge-computing
https://builtin.com/cloud-computing/what-is-edge-computing
https://builtin.com/transportation-tech/self-driving-cars
https://builtin.com/artificial-intelligence/cognitive-computing
https://builtin.com/artificial-intelligence/cognitive-computing
https://builtin.com/artificial-intelligence
https://builtin.com/artificial-intelligence
https://ee.stanford.edu/news/2020/nov/kwabena-boahen-describes-neuromorphic-computing-future-everything
https://builtin.com/hardware/moores-law
https://builtin.com/machine-learning/nn-models
https://builtin.com/machine-learning/nn-models

2

How Neuromorphic Computing Differs

from Traditional Computing?

Neuromorphic computing architecture

is a departure from the traditional computer

architecture we commonly use today, which is

called von Neumann architecture. Von

Neumann computers process information in

binary, meaning everything is either a one or a

zero. And they are inherently sequential, with a

clear distinction between data processing (on

CPUs) and memory storage

(RAM). Meanwhile, neuromorphic computers

can have millions of artificial neurons and

synapses processing different information

simultaneously. This gives the system a lot

more computational options than von Neumann

computers. Neuromorphic computers integrate

memory and processing more closely, too,

speeding up more data-intensive tasks. Von

Neumann computers have been the standard for

decades, and are used for a wide range of

applications, from word processing to scientific

simulations. But they’re energy inefficient and

often run into data transfer bottlenecks that

slow down performance. And as time goes on,

von Neumann architectures will make it

increasingly more difficult to deliver increases

in compute power that we need. This has led

researchers to pursue alternative architectures

like neuromorphic and quantum.

Neuromorphic Computing vs. Quantum

Computing

Neuromorphic computing and quantum

computing are two emerging approaches to

computation, each with its own distinct set of

characteristics, advantages and applications.

Neuromorphic computing

 It is inspired by the structure and

functionality of the human brain.

 It uses artificial neurons and synapses

to accomplish parallel processing and

real-time learning.

 It is well suited for tasks involving

pattern recognition and sensory

processing.

 It is logistically easier to accomplish

than quantum computing.

 It is more energy efficient than quantum

computing.

Quantum computing

 It leverages principles of quantum

mechanics to process information.

 It relies on qubits (quantum bits) to run

and solve multidimensional quantum

algorithms. It is especially good at

efficiently solving complex problems

like cryptography and molecular

simulation.

 It requires lower temperatures and uses

more power than neuromorphic

computers.

Although they are quite different from one

another, both neuromorphic and quantum

computing hold significant promise in their

https://builtin.com/hardware/quantum-computing
https://builtin.com/hardware/quantum-computing
https://builtin.com/cybersecurity/cryptography

3

own rights, and are still very much in the early

stages of development and application.

Benefits of Neuromorphic Computing

Faster Than Traditional Computing

Neuromorphic systems are designed to

imitate the electrical properties of real neurons

more closely which could speed up

computation and use less energy. Because of

they are operating in an event-driven way,

where neurons only process information when

relevant events occur, they can generate

responses. Low latency is always beneficial,

but it can make a big difference in tech that

relies on real-time sensor data processing,

like IoT devices.

Excellent at Pattern Recognition

Because neuromorphic computers

process information in such a massively

parallel way, they are particularly good at

recognizing patterns. By extension, this means

they’re also good at detecting anomalies,

Accenture Labs’ Danielescu said, which can be

useful in anything from cybersecurity to health

monitoring.

Able to Learn Quickly

Neuromorphic computers are also

designed to learn in real-time and adapt to

changing stimuli, just as humans can, by

modifying the strength of the connections

between neurons in response to

experiences. This versatility can be valuable in

applications that require continuous learning

and quick decision-making, whether that’s

teaching a robot to function on an assembly

line or having cars navigate a busy city street

autonomously.

 Energy Efficient

One of the most prominent advantages

of neuromorphic computing is its energy

efficiency, which could be especially beneficial

in the making of artificial intelligence

a notoriously wasteful industry. Neuromorphic

computers can process and store data together

on each individual neuron, as opposed to

having separate areas for each the way von

Neumann architectures do. This parallel

processing allows multiple tasks to be

performed simultaneously, which can lead to

faster task completion and lower energy

consumption. And spiking neural networks

only compute in response to spikes, meaning

only a small portion of a system’s neurons use

power at any given time while the rest remain

idle.

Neuromorphic Computing Uses

Despite these challenges, neuromorphic

computing is still a highly funded field

projected to be worth some $8 billion,

according to one report. And experts are

enthusiastic about its potential to revolutionize

various tech fields thanks to its unique ability

to mimic the brain’s information processing

and learning capabilities.

Self-Driving Cars

Self-driving cars must make instant

decisions to properly navigate and avoid

collisions, which can require extensive

https://builtin.com/internet-things/iot-devices
https://builtin.com/greentech/green-computing
https://builtin.com/greentech/green-computing
https://builtin.com/artificial-intelligence/ai-climate-change-dilemma
https://www.alliedmarketresearch.com/press-release/neuromorphic-computing-market.html
https://builtin.com/transportation-tech/self-driving-cars

4

computing power. By employing neuromorphic

hardware and software, self-driving cars could

be able to carry out tasks faster than if they

used traditional computing, all with lower

energy consumption. This can make for quicker

response times and corrections on the road

while also keeping overall energy emissions

down.

 Drones

Using neuromorphic

computing, drones could be just as responsive

and reactive to aerial stimuli as a living

creature. This technology may allow vision-

based drones to autonomously traverse

complex terrain or evade obstacles. A

neuromorphic-engineered drone can also be

programmed to only increase its energy

usage when processing environmental changes,

allowing it to rapidly respond to sudden crises

such as in rescue or military operations.

 Edge AI

Neuromorphic computing’s energy

efficiency, adaptability and ability to process

data in real-time make it well-suited for edge

AI, where computations are done locally on a

machine (like a smart device or autonomous

vehicle) rather than in a centralized cloud

computing facility or offsite data center,

requiring the real-time processing of data from

things like sensors and cameras. With its event-

driven and parallel-processing capabilities,

neuromorphic computing can enable quick,

low-latency decision-making and its energy

efficiency can extend the battery life of these

devices, reducing the need to recharge or

replace edge devices around the home. In fact,

Bron said some studies have found

neuromorphic computing to be 100-times more

effective in terms of battery efficiency than

normal computing.

 Robotics

Neuromorphic systems can enhance the

sensory perception and decision-making

capabilities of robots, enabling them to better

navigate complex environments (like a factory

floor), recognize objects and interact with

humans more naturally.

 Fraud Detection

Neuromorphic computing excels at

recognizing complex patterns and could

therefore identify subtle patterns indicative of

fraudulent activity or security breaches such as

unusual spending behaviour, unauthorized or

counterfeit login attempts. Plus, the low latency

processing of neuromorphic computing could

enable a swifter response once the fraud has

been detected such as freezing accounts or

alerting the proper authorities in real time.

 Neuroscience Research

Through its use of brain-inspired neural

networks, neuromorphic computing hardware

is used to advance our understanding of human

cognition. As researchers try to recreate our

thought processes in electronics, they may

learn more about the brain’s inner workings. In

2020, Intel partnered with Cornell University to

essentially teach its neuromorphic computer

https://builtin.com/drones
https://www.westernsydney.edu.au/icns/research_projects/open_phd_projects/neuromorphic_engineering_for_acoustic_aerial_drone_detection_in_visually_obscured_environments
https://builtin.com/artificial-intelligence/edge-ai
https://builtin.com/artificial-intelligence/edge-ai
https://builtin.com/internet-things/smart-device
https://builtin.com/artificial-intelligence/artificial-intelligence-automotive-industry
https://builtin.com/artificial-intelligence/artificial-intelligence-automotive-industry
https://builtin.com/internet-things/what-is-a-smart-home
https://builtin.com/robotics/industrial-robot
https://builtin.com/robotics/industrial-robot
https://builtin.com/robotics/cobot
https://builtin.com/robotics/cobot
https://builtin.com/cybersecurity/causes-data-breaches

5

chip Loihi how to identify smells. Eventually

the researchers said they would like to extend

their approach to processes like sensory scene

analysis and decision-making, helping them to

understand how the brain’s neural circuits

solve complex computational

problems. The Human Brain Project, an EU-

funded group made up of some 140

universities, teaching hospitals and research

centers, spent ten years attempting to create a

human brain using two neuromorphic

supercomputers. It concluded its work in

September of 2023.

S.Dinesh

III B.Sc. (Computer Technology)

PostgreSQL

PostgreSQL is a powerful, open source

object-relational database system that uses and

extends the SQL language combined with

many features that safely store and scale the

most complicated data workloads. The origins

of PostgreSQL date back to 1986 as part of

the POSTGRES project at the University of

California at Berkeley and has more than 35

years of active development on the core

platform. PostgreSQL has earned a strong

reputation for its proven architecture,

reliability, data integrity, robust feature set,

extensibility and the dedication of the open

source community behind the software to

consistently deliver performant and innovative

solutions. PostgreSQL runs on all major

operating systems, has been ACID-compliant

since 2001 and has powerful add-ons such as

the popular PostGIS geospatial database

extender. It is no surprise that PostgreSQL has

become the open source relational database of

choice for many people and organisations.

PostgreSQL comes with many

features aimed to help developers build

applications, administrators to protect data

integrity and build fault-tolerant environments,

and help one manage one’s data no matter how

big or small the dataset. In addition to

being free and open source, PostgreSQL is

highly extensible. PostgreSQL tries to conform

with the SQL standard where such

conformance does not contradict traditional

features or could lead to poor architectural

decisions. Many of the features required by the

SQL standard are supported, though sometimes

with slightly differing syntax or function.

Further moves towards conformance can be

expected over time. As of the version 16

release in September 2023, PostgreSQL

conforms to at least 170 of the 179 mandatory

features for SQL:2023 Core conformance.

Features of PostgreSQL

Data Types

 Primitives: Integer, Numeric, String,

Boolean

 Structured: Date/Time, Array, Range /

Multirange, UUID

https://www.zdnet.com/article/intel-is-teaching-a-computer-chip-to-smell/
https://www.humanbrainproject.eu/en/follow-hbp/news/2023/09/28/human-brain-project-ends-what-has-been-achieved/
https://www.postgresql.org/docs/current/history.html
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://en.wikipedia.org/wiki/ACID
https://postgis.net/
https://www.postgresql.org/about/featurematrix/
https://www.postgresql.org/about/featurematrix/
https://www.postgresql.org/about/license/
https://www.postgresql.org/docs/current/features.html

6

 Document: JSON/JSONB, XML, Key-

value (Hstore)

 Geometry: Point, Line, Circle, Polygon

 Customizations: Composite, Custom

Types

Data Integrity

 UNIQUE, NOT NULL

 Primary Keys

 Foreign Keys

 Exclusion Constraints

 Explicit Locks, Advisory Locks

Concurrency, Performance

 Indexing: B-tree, Multicolumn,

Expressions, Partial

 Advanced Indexing: GiST, SP-Gist,

KNN Gist, GIN, BRIN, Covering

indexes, Bloom filters

 Sophisticated query planner / optimizer,

index-only scans, multicolumn statistics

 Transactions, Nested Transactions (via

savepoints)

 Multi-Version concurrency Control

(MVCC)

 Parallelization of read queries and

building B-tree indexes

 Table partitioning

 All transaction isolation levels defined

in the SQL standard, including

Serializable

 Just-in-time (JIT) compilation of

expressions

Reliability, Disaster Recovery

 Write-ahead Logging (WAL)

 Replication: Asynchronous,

Synchronous, Logical

 Point-in-time-recovery (PITR), active

standbys

 Tablespaces

Security

 Authentication: GSSAPI, SSPI, LDAP,

SCRAM-SHA-256, Certificate and

more

 Robust access-control system

 Column and row-level security

 Multi-factor authentication with

certificates and an additional method

Extensibility

 Stored functions and procedures

 Procedural Languages: PL/pgSQL, Perl,

Python, and Tcl. There are other

languages available through extensions,

e.g. Java, JavaScript (V8), R, Lua, and

Rust

 SQL/JSON constructors and path

expressions

 Foreign data wrappers: connect to other

databases or streams with a standard

SQL interface

 Customizable storage interface for

tables

 Many extensions that provide additional

functionality, including PostGIS

7

Internationalisation, Text Search

 Support for international character sets,

e.g. through ICU collations

 Case-insensitive and accent-insensitive

collations

 Full-text search

There are many more features that one

can discover in the PostgreSQL documentation.

Additionally, PostgreSQL is highly extensible:

many features such as indexes, have defined

APIs so that one can build out with

PostgreSQL to solve one’s challenges.

PostgreSQL has been proven to be highly

scalable both in the sheer quantity of data it can

manage and in the number of concurrent users

it can accommodate. There are active

PostgreSQL clusters in production

environments that manage many terabytes of

data and specialized systems that manage

petabytes.

S.Dharshini

I B.Sc. (Information Technology)

AUTOMATED TECHNIQUE FOR ANIME

COLORIZATION USING DEEP

LEARNING

Researchers report the world's first

technique for automatic colorization focused on

Japanese anime production. The new technique

is expected to promote efficiency and

automation in anime production. Japanese

researchers from IMAGICA GROUP Inc.,

OLM Digital, Inc. and Nara Institute of Science

and Technology (NAIST) have jointly

developed a technique for automatic

colorization in anime production.

While the number of animation works

produced in Japan has been increasing every

year, the number of animators has remained

almost unchanged. To promote efficiency and

automation in anime production, the research

team focused on the possibility of automating

the colorization of trace images in the finishing

process of anime production. By integrating the

anime production technology and know-how of

IMAGICA GROUP Inc. and OLM Digital, Inc.

with the machine learning, computer graphics

and vision technology of NAIST, the research

team succeeded in developing the world's first

technique for automatic colorization of

Japanese anime production. The technique is

based on recent advances of deep learning

approaches that are nowadays widely applied

in various fields.

After the trace image cleaning in a pre-

processing step, automatic colorization is

https://www.postgresql.org/docs/

8

performed according to the color script of the

character using a deep learning-based image

segmentation algorithm. The colorization result

is refined in a post-process step using voting

techniques for each closed region.

A.P.Anbu

I B.Sc. (Information Technology)

UNDERSTANDING LOW-CODE NO-

CODE (LCNC) PLATFORMS

The IT-enabling units of most

organizations face tremendous pressure to

develop and deploy software applications

rapidly as per end-user expectations. New

software developments are often put on hold

or delayed simply because of shortage of

skilled resources and a backlog of operations

and maintenance work. Developers of all

hues are expected to provide more

applications in less time than ever before,

and because developer talent is in short

supply, organizations must equip their

existing developers with tools and platforms.

When compared to traditional approaches,

low-code platforms simplify, speed and

lower the cost of application development,

which is particularly tempting to the IT

functions.

The digital workplace is adopting

low-code and no-code applications as their

preferred technology. The focus will shift

from application development to assembly

and integration. According to Gartner’s

recent research, by 2025, 70% of new apps

built by enterprises would use low-code or

no-code technologies, up from less than 25%

in 2020. While software is developed to

address business problems, internal IT teams

are losing ground to business teams who can

no longer wait months for a server to be

provisioned when they can simply go to the

cloud with a credit card. Similarly, they are

experimenting with new applications on their

own, sometimes without the involvement of

IT. Business teams/Client can design their

own applications using a low-code/no-code

approach. Because of the reduced cost and

lower technical barriers to entry, many

businesses are prioritizing the digital

transformation of daily operations and

procedures using low-code/no-code tools.

Professional developers may perform jobs

two to three times faster with these

technologies than with typical developer

9

tools. Low-code technologies also allow

business users and developers to focus on

their area of expertise thereby reducing

friction.

Advent of LCNC

Low-code and no-code development

platforms are tools for people who either do

not know how to code or have no time to

code. Whereas these low-code and no-code

frameworks are built on actual coding

languages like PHP, Python, and Java, end

users are not concerned with the specifics.

Instead, they are given visual software

development environments where they can

drag and drop program components, link

them and watch what occurs. In effect, it

may be utilized as a familiar wizard-style

paradigm to build, test and even deploy apps

that are totally focused on simplicity of use.

Many people consider Visual Basic as

one of the earliest low-code integrated

development environment (IDE). However, the

first true low-code application platforms

arrived in the late 1990s and early 2000s as

fourth-generation programming languages and

fast application development platforms.

Another approach to LCNC platforms began

with the spreadsheet, which has a long history

dating back to the 1960s. It is a non-procedural,

non-algorithmic approach to computation that

became immensely popular. Spreadsheets have

enabled a whole generation of businesses to

efficiently use computers without knowledge of

programming.

It is interesting to take note of the

evolution of programming itself. Assembler is

low-code in comparison to machine language

and toggling switches for directly inserting

binary instructions into the computer’s

memory. C and FORTRAN are low-code in

comparison to assembler; Python is low-code

in comparison to C++. Rather than writing

everything from scratch, developers can rely on

the Python runtime environment and libraries,

which contain millions of lines of code.

Advantages of LCNC

LCNC promises several advantages such as:

(i) Faster Development and Launch

Cycle: Low-code development speeds up

enterprise application development. The web-

based drag-and-drop functionalities, as well as

reusable application components and in-built

libraries aid in the application design process.

Organizations can launch their applications to

faster and make changes on short notice as a

result of this.

(ii) Degree of Freedom: LCNC platforms may

differ based on degree of freedom to configure

offerings by them. The higher number of

parameters offered to configure on the fly, in

any platform business scope, provides better

chance to end-users to model their

requirements

(iii) Tenancy Extension: While it is possible

to make a LCNC platform for most of the

requirement, still there is a possibility that

some peculiar needs remain unaddressed by the

platform framework and hence platform must

10

support provision of tenancy extension in

easier way using some scripting language to

tweak the behaviour of LCNC platform to meet

peculiar needs.

(iv) Promotes Innovation: Developers can use

LCNC to demonstrate their ideas quickly and

can be ramped up during implementation.

Instead of simply providing theory, a developer

can demonstrate how the project would shape

up in order to gain executive buy-in and

persuade management to devote more

development resources to the initiative. The

innovation using LCNC is further compounded

with Degree of Freedom and Tenancy

Extension features.

(v) Customer Experience: Customers who

grew up with digital devices expect similar

experiences when using any consumer apps.

Low code allows easy integration with

numerous services more quickly, maintaining a

uniform Omni channel experience.

(vi) Lower IT Infrastructure needs: Most

LCNC applications are available or deployable

on the cloud, providing on-demand scalability

and drastically reducing the upfront investment

needs in IT infrastructure. LCNC ensures faster

innovation in less time while reducing IT

staffing.

(vii) Increases Efficiency: No-code and low-

code apps are good for enhancing everyday

task efficiency because they need less

development effort. IT units can address their

own operational difficulties without needing

many coders if they can build their own

versions of familiar apps or swiftly install

much-needed functionalities.

(viii) Efficient Governance: A LCNC

platform allows IT and DevOps teams to

manage more efficiently a portfolio of

applications while maintaining complete

compliance and governance capabilities. Low

code decreases reliance on third-party apps for

quick fixes and allows for a collaborative work

environment.

(ix) Easy to understand: Traditional codes are

often difficult to understand as they are written

by several developers and often is not easy to

read and interpret. Debugging of such code

also is very time consuming. Low-code and no-

code platforms are easier to understand and

thus, easier to identify configuration/script

bugs and fix them.

(x) Increased Agility: In a rapidly evolving

digital world, businesses need to adapt and

respond effectively to changing scenarios and

dynamics along with leveraging potential

opportunities. Using a traditional development

approach to create applications is too time-

consuming. LCNC development tools help

speed up deployment of an almost endless set

of requirements more rapidly with little risk.

Disadvantages of LCNC

On the flip side, LCNC platforms have a few

disadvantages as well:

(i) Reduced flexibility: With traditional codes,

developers can customize their software as per

user requirements, however LCNC solutions

and plugins have built-in functionality and is

11

not always easy to fulfil related requirements.

Though this can be largely overcome with

provisions of Tenancy extensions using simple

scripting language.

(ii) Security and risk: LCNC platforms rely

heavily on their platform providers to mitigate

IT risks and security flaws as the application

providers do not have any control over the

source code. If these platform providers

discontinue services, no security updates would

be available, and applications will be unable to

fix them. Moreover, businesses relying on

LCNC providers risk their data and systems

being exposed and vulnerable to security

breaches. This is applicable for LCNC products

acquired from the vendors and not applicable

for in-house developed products.

(iii) Vendor lock-in: Applications using a

specific LCNC platform for their IT solution,

makes it difficult for them to switch to a

different platform. This increases the

dependency of the business on an individual

LCNC provider. Obviously, this is not

applicable for in-house developed products

An LCNC solution would generally limit

customization options to a large extent which

can be only done with enterprise wide

approach during architecture phase) within

the domain of discourse (Business

Boundary). Generic applications are often

easy fit and more adaptable to LCNC

solutions, while others are not. Before

adopting any platform, customization

requirements need to be carefully assessed.

Ultimately, the decision to use a LCNC

platform depends on each business’s

objectives and needs.

LCNC Architectural Guiding principles

The core guiding principles of architecting a

LCNC Platform is that a) architect must have

in-depth knowledge of domain of discourse

(or enterprise wide), b) Presence of

Enterprise view while architecting In order

to capture diverging requirements and

generalize them c) must possess strong

fundamentals of journey from Generalization

to specialization approach & Vice versa and

d) the architect must be committed to avoid

any possibility of “hard-coding” the business

logic or process or layouts in any way and c)

the proposed architecture should be open to

evolution.

The simplest & indicative yardstick to

determine their proximity to LCNC

architectural principle is [(Number of

parameters (Variables) available to client to

configure on the fly (without writing code) /

Number of total parameters(Variables)

available in the platform) * 100]. Higher the

percentage value of it would indicate better

degree of configurability meaning better LCNC

Platform. Obviously, a better LCNC Platform

would have no hardcoded parameters within

the boundary of platform business scope.

M.Harini

III B.Sc. (Computer Technology)

12

PROGRESSIVE WEB APP

A progressive web application (PWA),

or progressive web app is a type of application

software delivered through the web, built using

common web technologies

including HTML, CSS, JavaScript and Web

Assembly. It is intended to work on any

platform with a standards-compliant browser,

including desktop and mobile devices. Since a

progressive web app is a type

of webpage or website known as a web

application, it does not require separate

bundling or distribution. Developers can

simply publish the web application online,

ensure that it meets baseline installation

requirements and ensure that users will be able

to add the application to their home screen.

When one visit a website in the

browser, it's visually apparent that the website

is "running in the browser". The browser UI

provides a visible frame around the website,

including UI features like back/forward buttons

and a title for the page. The Web APIs one’s

website calls are implemented by the browser

engine.

PWAs typically look like platform-

specific apps they are usually displayed

without the browser UI around them but as a

matter of technology, still websites. This means

they need a browser engine, like the ones in

Chrome or Firefox, to manage and run them.

With a platform-specific app, the platform OS

manages the app, providing the environment in

which it runs. With a PWA, a browser engine

performs this background role, just like it does

for normal websites.

The browser starts a PWA's service

worker when a push notification is received.

Here, the browser's activity is entirely in the

background. From the PWA's point of view, it

might as well be the operating system that

started it. For some systems, such as

Chromebooks, there may not even be a

distinction between "the browser" and "the

operating system."

Advantages of PWA over traditional web

and native apps

 The progressive web apps can work on

any device with a browser. As a result,

they eliminate the need for separate

apps for different platforms.

 These apps work offline or with poor

connectivity. As a result, they are

providing a seamless user experience.

https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Webpage
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Home_screen

13

 The progressive web apps are faster and

more responsive than traditional ones.

Therefore, leading to higher user

engagement.

 Users can access them directly from the

web without downloading from an app

store.

K.Bharathkumar

III B.Sc. (Information Technology)

RELATIONAL DATABASE VS NON-

RELATIONAL DATABASE

The core difference between a relational

database and a non-relational database is how

data is structured and organized within each

type. Software applications can vary

significantly in how they handle data storage,

access, and management based on the type

used. The choice significantly impacts an

application's performance, scalability and

complexity.

Relational Database (SQL)

A relational database or a SQL

(structured Query Language) database

organizes data into tables (or relations)

containing rows and columns. Each table

represents a specific entity, while keys define

the relationships between the tables. These

keys allow for complex querying and data

manipulation when necessary.

Tables: The primary structure where data is

stored. Each table contains rows and columns,

with rows representing records and columns

representing fields in a

record. Schema: Defines the structure of the

database, including tables, columns, data types

and relationships between tables.

Primary Keys: Unique identifiers for each

record in a table, ensuring that each record can

be uniquely identified.

Foreign Keys: Fields that create a link

between two tables, establishing relationships

between them.

The components of a relational database allow

for unique characteristics that enable users to

ensure data consistency and integrity

throughout the software application. These

characteristics are:

 Structured Data: Data is stored in a

highly structured format, making it easy

to query and manipulate using SQL.

 ACID Compliance: Ensures reliable

transactions through Atomicity,

https://aloa.co/startup-glossary/terms/relational-database
https://aloa.co/startup-glossary/terms/sql
https://aloa.co/startup-glossary/terms/sql

14

Consistency, Isolation and Durability

properties.

 Normalization: Organizing data to

minimize redundancy and improve data

integrity.

With its structured characteristics, a relational

database provides software developers with

these main advantages:

 Data Integrity: StroStrong

enforcement of data integrity and

relationships, reducing the likelihood of

data anomalies.

 Powerful Querying: Robust SQL

querying capabilities, enabling complex

joins, filters and aggregations.

 Standardization: SQL is widely

accepted, ensuring compatibility and

interoperability across different

systems.

Non-Relational Database (NoSQL)

A non-relational database or NoSQL (Not Only

SQL) database, provides a way to store and

retrieve data that does not adhere strictly to the

tabular design schema of relational databases.

NoSQL databases are better suited for handling

large volumes of varied data types and sizes

while keeping consistent metrics for high-

performance operations, making them ideal for

big data and real-time web applications.

Data Model: Large variety of data types from

document-based, key-value pairs, column-

family, or graph-based structures.

Schema Flexibility: No fixed schema; data

models can be dynamically adjusted to fit

based on the design and needs of the

application.

Sharding: Data is horizontally partitioned into

multiple servers to ensure scalability options

remain viable for long-term usage.

Replication: Real-time web applications that

deal with large and repetitive data benefit from

NoSQL databases' ability to replicate data

across multiple nodes.

Each component offers a more extensive

selection of options based on the developer's

specifications and application requirements.

High-performance operations are more

accessible to track and manage under the right

database practices. NoSQL platforms heavily

rely on these characteristics to stand out:

Scalability: Horizontal scaling makes

distributing this non-relational database

through multiple servers easier.

https://aloa.co/startup-glossary/terms/non-relational-database

15

Performance: High read/write performance

suits real-time applications and programs

perfectly.

Flexibility: Schema less design allows for easy

adaptation to changing data requirements.

These characteristics provide various

advantages that set it apart from the other types

of databases. These benefits are:

 Handling Unstructured Data: Semi-

structured and unstructured data storage

and manipulation are easier to handle

while also opening for complex systems

for management.

 Availability and Fault

Tolerance: Often designed with built-

in replication and distribution features,

ensuring high availability.

 Big Data Applications: Suitable for

handling large volumes of data

generated at high velocity.

Differences Between Relational and Non-

Relational Databases

With a high-level understanding of

relational vs. non-relational databases, one can

now compare them against each other when it

comes to their key differences. To fully

understand these differences, it's important to

look at how they differ regarding data

structure, performance, scalability, schema and

development.

1. Data Structure

A data structure is how data is organized and

stored in a database. Relational databases use a

table-based structure, while non-relational

databases use different data models such as

key-value, document, column families and

graphs.

A relational database is well-suited for any

application that demands a high level of data

organization, integrity and relational mapping.

On the other hand, software applications that

require flexible, scalable solutions to handle

large volumes of diverse and rapidly changing

data are better suited for non-relational

databases.

2. Performance

When it comes to performance between a

relational database vs non-relational database, a

relational database provides strong data

consistency and integrity. A non-relational

database performs faster for specific use cases

like big data and real-time processing.

https://aloa.co/startup-glossary-terms/what-is-a-data-structure

16

3. Scalability

Scalability in terms of relational and non-

relational databases refers to the ability of the

database to handle increasing amounts of data

and user load without compromising

performance. It involves the database's capacity

to expand its resources and capabilities to

accommodate growth.

Relational databases have limited scalability,

making them less suitable for large datasets and

high read/write loads. Non-relational databases

are highly scalable and can more efficiently

handle large-scale, distributed data.

4. Query Language

A query language is a specialized language

used to communicate with a database to

retrieve, manipulate and manage data. It allows

users and applications to interact with the

database by specifying queries that describe the

data they want to access or manipulate.

Relational databases use SQL for querying and

manipulating data. In contrast, non-relational

databases typically use query languages or

APIs which can vary between databases.

5. Schema

A schema is a structure or blueprint that

defines how data is organized and represented

in a database. It defines the tables, fields,

relationships and constraints that ensure data

integrity and consistency within the database.

Relational databases have a predefined schema,

making them better suited for structured data.

Non-relational databases, however, are more

flexible and can accommodate various types of

data.

6. Development

In terms of development and a relational

database vs a non-relational database, relational

databases require more development effort

when creating complex queries or changing the

database structure. Non-relational databases are

easier to develop and require fewer resources.

Popular Relational Databases (SQL

Databases)

Popular relational databases used in software

development include open-source and

commercial options that cater to various needs,

from small-scale applications to large

enterprise systems. Here are some of the most

widely used relational databases:

17

Popular Non-Relational Databases (No SQL

Databases)

Non-relational databases, or NoSQL databases,

are designed to handle large volumes of diverse

data types and provide high performance and

scalability. Here are some of the most widely

used NoSQL databases:

M.Harini

II B.Sc. (Computer Technology)

METHODOLOGIES IN INTERNET OF

THINGS (IOT)

The Internet of Things (IoT) is an

emerging technology with a lot of applications

and a potential area of research. Low power

Wireless Personal Area Networks(6LoWPANs)

are IPv6 enabled which participate an essential

role in IoT. IPv6 is suited to Internet

integration, low power energy consumption

and wireless ubiquitous availability. The aim of

IoT is to create a favourable situation for

devices from anywhere to communicate with

each other. The term Internet of Things was

first begot by Kevin Ashton (1999) which

prompted mechanical upheaval for the fate of

registering and correspondences. Its

advancement relies upon a dynamic specialized

development in varied vital fields, commencing

wireless sensors to the nano-technology based

architectures. This type of technology includes

smart city, control activation and support of

complex frameworks in industry field, well-

being, communication and transport.

IoT Components

The components of IoT are:

 Device(The Thing)

 Local network

 Internet

 Backend services

 Applications

Methodologies for IoT

Simulators

There are two versions of Network Simulators

(NetSim). They are Network Simulator Version

2 (NS2) and Network Simulator Version

3(NS3). A NS2 replication tool is an occasion

driven which is extensively used in studying

and considerate the active environment of the

announcement network. The other simulators

are: IOTify, ifog simulator, Cooja simulator,

18

MATLAB, CISCO packet tracer, Bevywise

IOT simulator, Ansys simulator, IBM Bluemix

simulator etc. These simulators are used for

showing simulation of the motes in Internet of

Things (IoT). Among all these Cooja simulator

is most popular simulator for IoT.

Operating System

There are three types of operating systems that

support Internet of Things (IoT).

 Tiny OS(No support available as on

date, no support for IoT devices)

 Contiki OS(So popular)

 RIOTOS(Upcoming and becoming

popular).

Cooja Simulator is used for implementation

in Contiki OS. Programming of Internet of

Things is done in Contiki OS using Cooja

Simulator. Cooja is the Contiki network

simulator. Cooja authorizes large moreover

little networks of Contiki motes to be

replicated. Contiki is an effective organization

that focuses on low power IoT devices.Motes

can be emulated at the hardware level which is

slower but allows precise inspection of the

system behaviour, or at a less detailed level,

which is faster and allows simulation of larger

networks. Contiki is an open source operating

system that is used to connect with the tiny

low-cost microcontrollers and sensors to the

internet. Contiki operating system is preferred

because it supports various internet standards,

rapid development, selection of hardware,

active community to help and commercial

support together with an open source license.

Contiki is designed mainly for tiny devices

and thus the memory footprint is very less

when compared with other systems, it supports

the Full TCP with IPv6 and it handles power

recognition where in the device power

management is handled by the OS. All the

modules of Contiki are loaded and unloaded

during the run time. One of the most important

features of Contiki is the use of Cooja

Simulator to emulate if any of the hardware

devices is not available.Contiki OS makes use

of with Cooja simulator for the implementation

of 6LoWPAN in IoT. Following figures show

the screens of Contiki OS and simulation to

send data from source to destination using

Cooja simulator.

B.Manju Bashini

I B.Sc. (Computer Technology)

EXPLAINABLE ARTIFICIAL

INTELLIGENCE (XAI)

Explainable artificial intelligence (XAI)

is a set of processes and methods that allows

human users to comprehend and trust the

results and output created by machine learning

algorithms. Explainable AI is used to describe

an AI model, its expected impact and potential

biases. It helps characterize model accuracy,

fairness, transparency and outcomes in AI-

powered decision making. Explainable AI is

crucial for an organization in building trust and

https://www.ibm.com/consulting/artificial-intelligence

19

confidence when putting AI models into

production. AI explainability also helps an

organization adopt a responsible approach to

AI development.

As AI becomes more advanced, humans

are challenged to comprehend and retrace how

the algorithm came to a result. The whole

calculation process is turned into what is

commonly referred to as a “black box" that is

impossible to interpret. These black box

models are created directly from the data, and

not even the engineers or data scientists who

create the algorithm can understand or explain

what exactly is happening inside them or how

the AI algorithm arrived at a specific result.

There are many advantages to

understanding how an AI-enabled system has

led to a specific output. Explainability can help

developers ensure that the system is working as

expected, it might be necessary to meet

regulatory standards, or it might be important

in allowing those affected by a decision to

challenge or change that outcome.

With explainable AI as well as

interpretable machine learning organizations

can gain access to AI technology’s underlying

decision-making and are empowered to make

adjustments. Explainable AI can improve the

user experience of a product or service by

helping the end user trust that the AI is making

good decisions. As AI becomes more

advanced, ML processes still need to be

understood and controlled to ensure AI model

results are accurate. Let’s look at the difference

between AI and XAI, the methods and

techniques used to turn AI to XAI and the

difference between interpreting and explaining

AI processes.

XAI implements specific techniques and

methods to ensure that each decision made

during the ML process can be traced and

explained. AI, on the other hand, often arrives

at a result using an ML algorithm, but the

architects of the AI systems do not fully

understand how the algorithm reached that

result. This makes it hard to check for accuracy

and leads to loss of control, accountability and

auditability.

M.Harini

II B.Sc. (Computer Technology)

REINFORCEMENT LEARNING

Reinforcement learning is an area of

Machine Learning. It is about taking suitable

action to maximize reward in a particular

situation. It is employed by various software

and machines to find the best possible

behaviour or path it should take in a specific

situation. Reinforcement learning differs from

supervised learning in a way that in supervised

learning the training data has the answer key

with it so the model is trained with the correct

answer itself whereas in reinforcement

learning, there is no answer but the

20

reinforcement agent decides what to do to

perform the given task. In the absence of a

training dataset, it is bound to learn from its

experience.

Reinforcement Learning (RL) is the

science of decision making. It is about

learning the optimal behaviour in an

environment to obtain maximum reward. In

RL, the data is accumulated from machine

learning systems that use a trial-and-error

method. Data is not part of the input that we

would find in supervised or unsupervised

machine learning. Reinforcement learning

uses algorithms that learn from outcomes and

decide which action to take next. After each

action, the algorithm receives feedback that

helps it determine whether the choice it made

was correct, neutral or incorrect. It is a good

technique to use for automated systems that

have to make a lot of small decisions without

human guidance.

Reinforcement learning is an autonomous,

self-teaching system that essentially learns by

trial and error. It performs actions with the

aim of maximizing rewards or in other words,

it is learning by doing in order to achieve the

best outcomes.

Types of Reinforcement

There are two types of Reinforcement:

Positive: Positive Reinforcement is defined as

when an event, occurs due to a particular

behaviour, increases the strength and the

frequency of the behaviour. In other words, it

has a positive effect on behaviour.

Advantages of reinforcement learning are:

 Maximizes Performance

 Sustain Change for a long period of

time

 Too much Reinforcement can lead to

an overload of states which can

diminish the results

Negative: Negative Reinforcement is defined

as strengthening of behaviour because a

negative condition is stopped or avoided.

Advantages of reinforcement learning:

 Increases Behaviour

 Provide defiance to a minimum

standard of performance

Elements of Reinforcement Learning

 Reinforcement learning elements are as

follows:

 Policy

 Reward function

 Value function

 Model of the environment

Policy: Policy defines the learning agent

behaviour for given time period. It is a

mapping from perceived states of the

environment to actions to be taken when in

those states.

Reward function: Reward function is used to

define a goal in a reinforcement learning

problem. A reward function is a function that

provides a numerical score based on the state

of the environment

Value function: Value functions specify what

is good in the long run. The value of a state is

the total amount of reward an agent can expect

21

to accumulate over the future, starting from

that state.

Model of the environment: Models are used

for planning.

 Credit assignment problem:

Reinforcement learning algorithms learn to

generate an internal value for the

intermediate states as to how good they are

in leading to the goal. The learning

decision maker is called the agent. The

agent interacts with the environment that

includes everything outside the agent.

The agent has sensors to decide on its state in

the environment and takes action that modifies

its state.

 The reinforcement learning problem

model is an agent continuously interacting

with an environment. The agent and the

environment interact in a sequence of time

steps. At each time step t, the agent

receives the state of the environment and a

scalar numerical reward for the previous

action, and then the agent then selects an

action.

Reinforcement learning is a technique for

solving Markov decision problems.

 Reinforcement learning uses a formal

framework defining the interaction

between a learning agent and its

environment in terms of states, actions and

rewards. This framework is intended to be

a simple way of representing essential

features of the artificial intelligence

problem.

Various Practical Applications of

Reinforcement Learning

 RL can be used in robotics for

industrial automation.

 RL can be used in machine learning

and data processing

 RL can be used to create training

systems that provide custom instruction

and materials according to the requirement

of students.

Application of Reinforcement Learnings

1. Robotics: Robots with pre-programmed

behaviour are useful in structured

environments such as the assembly line of an

automobile manufacturing plant, where the

task is repetitive in nature.

2. A master chess player makes a move. The

choice is informed both by planning,

anticipating possible replies and counter

replies.

3. An adaptive controller adjusts parameters of

a petroleum refinery’s operation in real time.

V.B Krishna Prabu

 II B.Sc. (Computer Technology)

NEW PROGRAMMING LANGUAGES

Learning a new programming language

does more than just educate users on one

specific area of coding. It can also help them

sharpen problem-solving skills, boost their job

opportunities and get a better understanding of

technology as a whole.

22

Functional Programming Languages

1. F#

F# is an open-source, cross-platform

language that takes on more of a hybrid

position between general and functional

languages. Many programmers find F# to offer

the same kind of simplicity as Python while

delivering a more seamless experience

than C# and Java. This may be because the

language avoids the clutter of semicolons, curly

brackets and other symbols, so developers

don’t have to worry about clarifying their

object type. As a result, tasks such as list

processing and applying complex type

definitions are easier when working in F#. The

hybrid nature of F# also makes it compatible

with other styles, including databases, websites

and .NET entities. Whatever elements

designers are working with, they can rely on

the programming language’s strong type

system to root out common errors. These

factors all contribute to the flexibility and

convenience of F#, which is why it remains a

popular programming language.

2. Clojure

Clojure is a general-purpose language

designed for concurrency, which means it

supports multiple computations happening at

the same time. But Clojure is also a Lisp

language, keeping its syntax to a minimum.

These elements facilitate a coding environment

where developers can easily preserve code

while building on previous projects to make

changes as needed.

This programming language was also made for

the Java Virtual Machine (JVM), so it pairs

well with any system related to the JVM. It’s

no surprise then that many companies have

added Closure to their tech stacks, including

Adobe, Apple and Netflix.

3. Elixir

Elixir, however, is easier to write than

Erlang, with the functional programming

concepts of a language like Haskell. Elixir runs

on the Erland virtual machine, which works

well for low-latency distributed systems. The

platform prioritizes scalability and fault

tolerance. Lightweight threads of events, or

processes, send messages to each other. Those

processes can run concurrently, maximizing

machine resources and making it easier to scale

vertically or horizontally. If something goes

wrong, the platform shows the developer the

last known state that’s sure to work.

4. PureScript

PureScript is a purely functional

programming language that compiles

to JavaScript. Most comparable to Haskell,

PureScript is best used for developing web

applications and server-side apps. Like Haskell,

it uses algebraic data types, pattern matching

and type classes. PureScript’s types are

expressive and support type inference, meaning

that it requires far fewer explicit type

annotations than other languages. One of its

biggest strengths is its interoperability with

other languages that target JavaScript.

https://fsharp.org/
https://builtin.com/software-engineering-perspectives/python
https://builtin.com/learn/tech-dictionary/c-sharp
https://builtin.com/learn/tech-dictionary/java
https://clojure.org/
https://clojure.org/community/companies
https://www.purescript.org/
https://builtin.com/learn/tech-dictionary/javascript

23

5. Swift

Swift is a general-purpose compiled

programming language developed by Apple

that allows developers to write software for

phones, servers, desktops or really anything

else that runs on code. Originally developed as

a replacement for Apple’s earlier programming

language, Objective-C, Swift combines ideas

from other languages like Objective-C, Rust,

Ruby and Python to help reduce common

programming errors. The language combines a

powerful type inference with a modernized

syntax that helps ideas to be clearly expressed

through code. Swift is an especially important

skill for those seeking iOS developer roles.

Procedural Programming Languages

1. Go

Go is a C-style language created by

engineering leads at Google. Sleeker

than C++ or Java and more typesafe than Ruby

or Python, Go comes with benefits and

drawbacks. Some drawbacks: Typing is strict.

One can’t mix signed and unsigned integers, or

integer sizes. Go also has some noticeable

omissions: There are no generics and no

inheritance. But Go’s simplicity creates

some marked advantages. Namely, the

language is easy to use. There’s less hiding

behind the written code and the lack of

inheritance helps developers avoid webs of

dependencies, making it a solid language

for data science. Tight definitions and thread

safety seem to be Go priorities.

Object-Oriented Programming Languages

1. Dart

Another C-style language from Google, Dart is

like JavaScript with type safety. It can easily

compile to JavaScript, native machine code or

WebAssembly. It can also run back-end code.

Dart is good for building user interfaces with

event-driven code. The hot reload command

lets developers see changes to their

applications instantaneously.

Some other Dart advantages, according to one

Dart team member: optional static types,

minimal compile-time errors and a strong,

built-in editor.

2. Apache Groovy

Apache Groovy integrates with the Java

platform and was made with the purpose of

making life easier for Java developers. The

programming language showcases concise and

flexible syntax, allowing developers to reduce

the time it takes to complete projects. This trait

is also one of many reasons why Apache

Groovy comes with a flat learning curve,

rivaling the simplicity of languages like

Python. Developers don’t have to choose

between static and dynamic languages since

Apache Groovy supports both types. These

features are what make Apache Groovy a great

programming language for conducting tests.

The syntax is designed to be test-friendly,

leading many Java developers to embrace this

language.

https://builtin.com/software-engineering-perspectives/swift
https://builtin.com/software-engineering-perspectives/objective-c
https://builtin.com/software-engineering-perspectives/whats-rust
https://builtin.com/learn/careers/ios-developer
https://builtin.com/software-engineering-perspectives/golang
https://builtin.com/learn/c-plus-plus
https://builtin.com/software-engineering-perspectives/golang-advantages
https://builtin.com/software-engineering-perspectives/why-googles-programming-language-worth-your-time
https://builtin.com/data-science
https://dart.dev/
https://builtin.com/design-ux/what-is-ui
https://softwareengineering.stackexchange.com/questions/164273/does-dart-have-any-useful-features-for-web-programmers/164304#164304
https://groovy-lang.org/

24

3. Crystal

Crystal is an object-oriented

programming language that employs easy-to-

learn syntax, especially for Ruby developers

since the language takes its cue from Ruby’s

simple syntax. The language is also static,

allowing it to catch errors earlier on in the

development process. This feature spares teams

from making expensive mistakes during

runtime, such as overlooking null

references. As an extra measure, Crystal

provides built-in type inference, so developers

don’t have to clarify which language they’re

using every time. Crystal also supports

concurrency with a fiber system, allowing

developers to perform more computations

without draining memory.

10. Pony

Pony is a language based on data-race-

free typing and garbage collection, and uses the

actor model as well as something called

reference capabilities. Reference capabilities

compel the programmer to label pieces of data

as mutable, immutable or isolated. If data is

mutable, the compiler doesn’t allow the

programmer to exchange the data between

actors when two actors access mutable data at

the same time, they may make contradictory

updates, or the data could get corrupted.

Reference capabilities keep data safe and

eliminate the need for locks to prevent

concurrent data updates. With no locks,

concurrent programs run faster. Down-sides to

Pony are low API stability, few high-quality

third-party libraries and limited native tooling.

P.Logesh

II B.Sc. (Information Technology)

EXPLORING THE LATEST IN

ROBOTICS TECHNOLOGY

The robotics industry is evolving at a

rapid pace. Ground breaking advancements

emerging in various sectors, from industrial

automation to healthcare robotics. In this

article, we give a curated recap of the latest

trends and innovations in robotics that we have

covered.

Humanoid Robots in the Factory

Humanoid robots are making strides towards

integration in industry and healthcare. Recent

developments by companies like Amazon and

BMW involve testing humanoid robots within

workplace settings. These robots aim to handle

repetitive or unsafe tasks, enhance efficiency,

and work alongside humans. Challenges

include achieving safety and reliability levels.

https://crystal-lang.org/
https://www.ponylang.io/
https://www.ponylang.io/blog/2017/05/an-early-history-of-pony/
https://www.ponylang.io/blog/2017/05/an-early-history-of-pony/

25

New Mobile Robots on the Market

Autonomous mobile robots (AMRs) are

revolutionizing various industries by offering

flexible and intelligent solutions. Unlike

automated guided vehicles (AGVs), which

follow specific guided paths, AMRs use data

from cameras, laser scanners and other sensors

to navigate freely in work environments while

avoiding obstacles. They can operate alongside

human workers, enhancing efficiency.

3.A New Cobot Manufacturer

French company MS-Innov is making its entry

into the manufacturing sector with its modular

cobots. What sets MS-Innov’s cobots apart are

two key features:

Modularity: The MS-Innov cobots come in 4-

axis, 5-axis and 6-axis configurations, available

in two sizes (M and S) and three module types

(M1, M2, and M3). This scalability and

customization allow them to meet varying

payload requirements and reach. The cobots

can be assembled manually within minutes

using an intuitive nut-and-bolt system. The

focus is on flexibility, ensuring that once

purchased, the cobot can be reconfigured for

different application scenarios, avoiding idle

equipment in companies.

Infinite Rotation: Unlike traditional systems,

MS-Innov’s cobots can rotate infinitely. They

utilize pins to transmit both information and

power, streamlining production processes by

eliminating the need for repositioning.

Industrial Exoskeletons

Industrial exoskeletons are stepping off

the silver screen and into the workplace. Unlike

their cinematic counterparts, real-world

exoskeletons prioritize worker safety over

sheer strength. Around 93,000 exoskeletons

were used in workplaces globally in 2022, with

that number expected to increase sevenfold by

2030. These wearable devices assist workers in

specific tasks, aiming to reduce injuries and

fatigue.

M.S.K Manassha

II B.Sc. (Information Technology)

THE FUTURE OF CODING

Coding is advancing at a rapid pace, driven by

new languages and ground breaking

technologies. According to the Bureau of

Labor Statistics, software development jobs

are projected to grow from 2022 to 2032, much

faster than the average for all occupations.

Understanding current coding trends is

essential for several reasons:

 Market demand: Coding trends often

reflect the current demands of the

market. By keeping up with these

trends, one can tailor one’s skills and

expertise to match what employers and

clients are looking for. This increases

one’s employability and opportunities

for freelance work.

 Efficiency and effectiveness: New

coding trends often bring with them

innovative tools, frameworks and

methodologies that can significantly

https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www.bls.gov/ooh/computer-and-information-technology/home.htm

26

improve development efficiency and

effectiveness. By incorporating these

trends into one’s workflow, one can

streamline processes, reduce

development time and deliver higher-

quality products.

 Competitive advantage: In today’s

competitive job market, staying ahead

of coding trends can give one a

competitive edge over other candidates.

Employers value candidates who

demonstrate awareness of the latest

technologies and trends, as it shows a

commitment to continuous learning and

improvement.

 Career growth: Understanding coding

trends allows one to anticipate future

industry developments and position

oneself for career growth. By acquiring

expertise in emerging technologies, one

can become a sought-after specialist in

one’s field and advance into higher-

paying or more senior roles.

 Innovation: Coding trends often pave

the way for innovation by introducing

new concepts, ideas and approaches to

software development. By staying

informed about these trends, one can

harness the latest innovations to create

ground breaking solutions and push the

boundaries of what’s possible in one’s

field.

N.Lavanya

III B.Sc. (Information Technology)

THE ROLE OF ARTIFICIAL

INTELLIGENCE (AI) IN THE

METAVERSE

Artificial intelligence or AI and metaverse

technology are the two most noticeable trends

in discussions on technology in the

21st century. Each technology can potentially

enhance the efficiency and productivity of

different processes. Artificial intelligence and

metaverse applications can offer new prospects

for improving productivity in different

industries such as gaming, education,

healthcare and others. However, the

technologies have been discussed separately

without any idea about the relationship

between them.

The metaverse’s impact on society and AI’s

ability to manage complicated tasks required

for the metaverse establish a synergetic

relationship between them.

How Can Artificial Intelligence fit in the

Metaverse?

Artificial intelligence, or AI, is a special

domain of computer science that focuses on

using natural language prompts as inputs for

generating human-like actions. AI systems are

capable of autonomous action, reasoning and

learning according to programmed

instructions. One can learn more about AI’s

role in the metaverse by identifying the core

traits of artificial intelligence which align with

https://101blockchains.com/artificial-intelligence/
https://101blockchains.com/metaverse-technology/
https://101blockchains.com/metaverse-technology/

27

the metaverse. AI research focuses on

developing machines that can process

information and understand natural language.

Machines would process data and take

decisions like human beings and they achieve

such functionalities by processing the data

generated by people every day. Another

significant highlight of AI points to its ability

for faster and more efficient data

processing. Artificial intelligence applications

in the metaverse would rely on the capabilities

of machine learning to use data generated in

the metaverse. AI could process data to identify

patterns and learn from the patterns to improve

their performance.

Interestingly, people use simple AI

systems in their everyday lives to obtain

information. For example, recommendations

based on product searches have machine

learning working their wonder behind the

scenes. As of now, most of the research on

artificial intelligence has been focused on

improving the relevance of AI for users. The

common theme in research on artificial

intelligence revolves around understanding

human behaviour and the physical world. The

prospects for an AI-generated metaverse would

translate into reality in the future. It is

important to note the changing trends in

computing, focused on contextual rather than

static experiences. The devices around us are

gradually adapting and becoming better at

understanding and anticipating our needs

because of AI.

How will the Metaverse Welcome AI?

The fundamentals of artificial

intelligence provided a brief overview of how

the core traits of AI could support metaverse

technology. Now, one can learn more about the

metaverse and Artificial Intelligence equation

by exploring the basics of the metaverse. The

Metaverse technology represents an open,

shared and persistent three-dimensional world,

which bridges the gap between virtual and

physical worlds. Some people have also

described the metaverse as a 3D version of the

Internet. The metaverse involves a combination

of different technologies, including physical,

virtual and augmented reality, in shared online

space.

The advantages of metaverse AI use

cases could help in capitalizing on the data

generated from digital activity in virtual spaces.

Metaverse technology provides immersive

experiences with the help of intuitive

interfaces, which allow users to create and

interact with visual information. AI could help

in improving the speed of development of the

metaverse. Although many companies are

actively involved in creating their

own metaverse platforms, the actual vision for

the metaverse suggests otherwise. The

metaverse should be one universal platform

accessible to every individual without any

walled gardens.

S.Dinesh

III B.Sc. (Computer Technology)

https://101blockchains.com/best-metaverse-platforms/

28

CODING TRENDS 2024

Artificial Intelligence

Artificial Intelligence (AI) is truly

transforming the coding world. Python, with its

powerful libraries like TensorFlow and

PyTorch, makes building AI and machine

learning applications much easier. But AI isn’t

just about creating smart apps; it’s also one’s

new best friend in coding. Additionally,

OpenAI’s ChatGPT, for example, is

revolutionizing how developers interact with

code. This intelligent AI chatbot can assist in

problem-solving, offering suggestions and even

completing lines of code, making coding faster

and more efficient than ever before. This

means less time spent on repetitive tasks and

more on the creative problem-solving that

makes coding fun. AI is making coding faster,

smarter and more efficient.

 No-code

Just as AI is enhancing coding

efficiency, no-code platforms are making

development accessible to everyone. One

noteworthy player in the no-code arena is

Fuzen, a specialized platform tailored for

building SaaS (Software as a Service)

applications. With Fuzen, users can effortlessly

create custom SaaS solutions without the need

for coding expertise. This empowers

entrepreneurs and businesses to bring

their ideas to life quickly and cost-effectively.

This trend is a game-changer because it lowers

the barrier to entry for software development.

Businesses can quickly prototype and launch

solutions, staying ahead of market demands.

For developers, it means more time to focus on

complex tasks while empowering others to turn

their ideas into reality. No-Code is all about

speed, innovation and accessibility.

Blockchain applications

Blockchain is revolutionizing security

and transparency. Blockchain technology is

about more than just cryptocurrencies; it’s a

game-changer for creating secure,

decentralized applications (dApps). If one has

played around with Ethereum, one knows about

Solidity, the language for writing smart

contracts. And now, languages like Rust and

Move are stepping up to enhance blockchain

performance and security. Blockchain ensures

data integrity without needing intermediaries,

which is a big deal for industries like finance,

healthcare, and supply chain management. For

developers, it opens up a world of opportunities

to build secure and reliable applications,

making it an exciting area to explore.

Sustainable software development

There’s also a growing focus on

Sustainable Software Development in 2024.

The tech industry’s carbon footprint is a

significant concern, with data centers

consuming a lot of energy. Developers are now

focusing on writing energy-efficient code and

optimizing algorithms to reduce resource

https://fuzen.io/from-turing-to-today-the-fascinating-ai-history/
https://fuzen.io/from-turing-to-today-the-fascinating-ai-history/
https://fuzen.io/ai-trends-2024-how-artificial-intelligence-is-shaping-the-future/
https://fuzen.io/
https://fuzen.io/
https://fuzen.io/
https://fuzen.io/create-new-saas-app/
https://fuzen.io/create-new-saas-app/
https://fuzen.io/micro-saas-ideas-for-2024/

29

usage. Using energy-efficient languages and

adopting green computing techniques helps the

environment and improves software

performance and cuts costs. As awareness of

sustainability grows, expect more tools and

frameworks designed to support eco-friendly

coding practices. It’s a win-win for the planet

and our software.

Serverless computing (FaaS)

To focus on sustainability, Serverless

Computing, or Function as a Service (FaaS), is

transforming how we deploy applications.

Platforms like AWS Lambda, Google Cloud

Functions and Azure Functions let one run

code without worrying about managing servers.

Serverless computing automatically scales and

saves costs since one only pays for the compute

time one uses. This simplifies development,

allowing one to focus on writing code and

creating features rather than managing

infrastructure. Serverless architectures lead to

faster development cycles and more responsive

applications.

Programming and programming languages

JavaScript (JS) remains a powerhouse in web

development, powering dynamic and

interactive websites. Its versatility and

widespread adoption make it a must-know

language for any developer looking to build

modern web applications.\

Python continues to soar in popularity due to

its simplicity, readability and vast ecosystem of

libraries and frameworks. From web

development to data science and machine

learning, Python’s flexibility makes it a

favorite among developers of all skill levels.

Ruby is beloved for its elegant syntax and

developer-friendly features. While its usage

may have declined slightly in recent years,

Ruby still maintains a dedicated community

and remains a top choice for building web

applications, particularly with the Ruby on

Rails framework.

Go (Golang), a relatively new language

developed by Google, has been gaining traction

for its simplicity, performance and built-in

support for concurrency. With its focus on

simplicity and efficiency, Go is becoming

increasingly popular for building scalable and

high-performance backend systems.

Rust is another rising star in the programming

world, known for its focus on safety,

https://fuzen.io/wp-content/uploads/2024/05/No-Code-Adoption-and-Customer-Experience-Profile-2.png

30

performance and concurrency. Rust’s memory

safety features make it ideal for systems

programming, where reliability and security are

paramount.

Each of these languages brings its own unique

strengths to the table, catering to different use

cases and developer preferences. Whether one

is building web applications, system software,

or machine learning models, there’s a

programming language out there to suit one’s

needs.

 Cybersecurity

Among all these advancements,

cybersecurity remains a top priority. With

cyber threats becoming increasingly

sophisticated, developers need to ensure that

their applications are secure from the ground

up. Continuous monitoring, secure coding

practices, and robust backup solutions are

essential to keep data safe. Developers must

integrate security measures throughout the

entire development cycle and stay updated on

the latest cybersecurity trends and threats. By

addressing cybersecurity concerns proactively,

developers can mitigate risks and safeguard

sensitive data from potential breaches and

attacks.

S.Dinesh

III B.Sc. (Computer Technology)

SPACE ROBOTICS

Space robotics is the development of

general purpose machines that are capable of

surviving in the space environment, performing

exploration, construction, maintenance,

servicing or other tasks. Humans control space

robots from either a “local” control console or

“remotely” controlled from human operators on

Earth. Space robots are generally designed to

do multiple tasks.

Space Research: “SPACE”, the word

itself signifies something infinite. Space travel

has always been dangerous and any unexpected

event can cause death. It is here that the robots

play a huge role and help mankind in his

research process. How Robots Work in Space?

Working principle of Space robots are based on

the SPA algorithm. SPA stands for sense, plan

and action. It is used in built world modules to

match and worked accordingly.

31

Flowchart

Technologies Used

Mapping and navigation One of the basic

functions of a space robot is to navigate its way

cleverly through all obstacles that come in its

way. Mapping and navigation comprise of

three more technologies.

1.Obstacle avoidance

2.Mapping

3.Path planning

4.Planning: It is a feature by which a robot

understands the situation and

5.decides a strategy to tackle it.

6.Sequencing: Selection of a particular skill set

which would result in perfect execution of a

plan. 7.Control: Performing the selected skill

set to perfection.

Types of Space Robots

1. Planetary Rovers: It is the most advanced

form of robotics technology used in space

research. They are the robots, which explore,

navigate and research themselves with the least

human intervention; they analyse the data

collected and send the results back to earth.

2.IN-Orbit Operators: They are the robots,

which assist an astronaut during his space

mission. For example, a robot can be designed

specially to refuel a shuttle thus helping the

astronaut to remain in his shuttle and

accomplish various tasks without any risk to

their lives.

3.Probes: A similar class of robots explores

the system without actually physically landing

anywhere. These typically use cameras and

variety of instruments to measure other planets,

moons, and the sun from distance. Most of

these use solar cells to their instruments.

